Skip to content

Integrative Scalable Computing Laboratory

A research group at the Department of Information Technology, Uppsala Universtity.

  • Home
  • Projects
  • People
  • Publications
  • Teaching
  • Software
  • Recruitment
  • About us
  • Toggle search form

PyURDME 1.0

Posted on June 25, 2014June 25, 2014 By admin No Comments on PyURDME 1.0

After more than a year of development, we are happy to announce the release of PyURDME 1.0.0! PyURDME is a Python module for spatial stochastic simulation model development and simulation. PyURDME is connected to URDME in that is uses a modified version of its core solver. While URDME is mainly designed as an interactive Matlab toolbox that makes use of the tight connection between Comsol Multiphysics to provide an interactive modeling environment, PyURDME is an object oriented API relying only on open source software, in particular the FeniCS/Dolfin project, providing great flexibility for modelers and developers to customize computational experiments.

PyURDME has also been designed with Cloud/Distributed computing in mind, and in particular it integrates well with the IPython tools, such as IPython Notebook. We are currently working on a platform for deploying PyURDME as a Cloud appliance, with support for interactive parallel computational experiments via IPython Parallel, so check back soon for updates on this project. We are also working on integration with StochSS, which ill provide an easy-to-use UI assisted endpoint to PyURDME.

PyURDME is a collaboration with Brian Drawert at UCSB.

News, PyURDME, Reaction Diffusion Master Equation, Software, StochSS, URDME

Post navigation

Previous Post: ECMTB 2014 and Computational Software
Next Post: Open PhD student position

More Related Articles

Spatial Stochastic Simulation of the Hes1 gene regulatory network Hes1
Postdoc in eScience/Computational developmental biology News
PhD student in Scientific Computing focusing on Secure Federated Machine Learning Data Science
Anass and Stefan moves on to new adventures News
Proactive Autoscaling for Edge Computing Systems with Kubernetes Applied Cloud Computing
Mesoscopic-microscopic hybrid algorithm with automatic partitioning Multiscale methods

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Data-and simulation-driven life science. Much of our work in eScience and applied ML has applications in life science, and in Systems Biology in particular. We aim to enable data-and simulation-driven scientific discovery.

HASTE - a cloud native framework for intelligent processing of image streams: http://haste.research.it.uu.se/

Follow us on twitter

Andreas HellanderFollow

Andreas Hellander
A_HellanderAndreas Hellander@A_Hellander·
11 May

Are you using StochSS? Please help us gather insights into what is working well and what can be improved by filling in this short survey https://forms.gle/mEqfASuUd3MDWuPS9

@LindaPetzold @briandrawert @mhucka

Reply on Twitter 1524477596930654214Retweet on Twitter 15244775969306542141Like on Twitter 15244775969306542141Twitter 1524477596930654214
A_HellanderAndreas Hellander@A_Hellander·
9 May

Apply to this PhD student position in the eSSENCE and SciLifeLab graduate school in data-intensive science!

This project is the intersection of cybersecurity and big data with main supervisor @sztoor.
https://www.uu.se/en/about-uu/join-us/details/?positionId=501061

Reply on Twitter 1523559501965987841Retweet on Twitter 1523559501965987841Like on Twitter 15235595019659878411Twitter 1523559501965987841
A_HellanderAndreas Hellander@A_Hellander·
28 Apr

PhD position in the eSSENCE/@scilifelab graduate school in data-intensive science with @cnettel: https://uu.se/en/about-uu/join-us/details/?positionId=501716 Apply and be part of a new interdiciplinary research effort @UU_University!

Reply on Twitter 1519564476856557568Retweet on Twitter 15195644768565575686Like on Twitter 151956447685655756810Twitter 1519564476856557568
A_HellanderAndreas Hellander@A_Hellander·
23 Apr

If you are a current user of StochSS please let us know your thoughts by filling out this brief user survey: https://forms.gle/3r836iph8gqFEpZX7

#systemsbiology #stochss @LindaPetzold @briandrawert @prashant_rsingh

Reply on Twitter 1517753867403993089Retweet on Twitter 15177538674039930892Like on Twitter 15177538674039930891Twitter 1517753867403993089
Retweet on TwitterAndreas Hellander Retweeted
AssistSweASSIST Sweden@AssistSwe·
14 Apr

Soon the partners in the ASSIST project will attend a workshop on federated learning arranged by Scaleout. Partners from different countries (Sweden, Belgium, Netherlands, Turkey) will contribute with nodes that train a segmentation network.

Reply on Twitter 1514516928823447553Retweet on Twitter 15145169288234475532Like on Twitter 15145169288234475531Twitter 1514516928823447553
Load More...

Decentralized AI, Federated Learning. One focus area of the group is development of methods and software to address decentralized and privacy-preserving AI. We are core contributors to the FEDn open source framework for scalable federated machine learning:

https://github.com/scaleoutsystems/fedn
Introduction to Federated Learning by Andreas Hellander
Join the discussion on Decentralized AI:

Scaleout Systems is a spin-out from ISCL on a mission to enable decentralized AI and federated learning to production.

https://www.scaleoutsystems.com/

Copyright © 2022 Integrative Scalable Computing Laboratory.

Powered by PressBook Blog WordPress theme